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GENERAL SOLUTIONS AND REDUCTION OF A SYSTEM OF 

EQUATIONS OF THE LINEAR THEORY OF ELASTICITY TO DIAGONAL FORM 

N. I. Ostrosablin UDC 539.3,517.958 

Numerous attempts have been made [i-ii] to represent stresses or displacements in terms 
of arbitrary independent functions (for example, harmonic and biharmonic functions) in such 
a way that the equations of elasticity theory are satisfied identically. We call such repre- 
sentations general solutions. However, up to the present, there has been no single approach 
to the construction of general solutions, in the present paper we present a method which 
makes it possible to reduce, in certain cases, a system of differential equations (of 
linear elasticity theory) with constant coefficients to a simpler system; in particular, to 
a diagonal system. Moreover, the transformation inverse to the initial system is specified 
by a transposed or conjugate matrix. Expressions are also obtained for the production of 
new solutions (operators of symmetry in the sense of group analysis), starting from some 
concrete solution. The idea of the method is presented briefly in [12]. Explicit formulas 
are presented for isotropic and transversally isotropic materials, and completeness and 
generality of the Papkovich-Neiber solution is shown. 

The equations of elasticity theory, in the presence of arbitrary anisotropy and the 
absence of volume forces, have the following form [7] in Cartesian orthogonal coordinates 
El, X 2, X3: 

L ~  = O, &J = 4~ = A . ~ , . ~ ,  - p~.., (1) 

where uj is the displacement vector; Ai(ks = (Aiks + Ais Aiks is a constant tensor 

of elastic moduli; p is the constant density of the material; 8 i. is the Kronecker symbol; 
8 k indicates differentiation with respect to the coordinate Xk; ~nd 8 indicates differen- 

tiation with respect to the time; repeated subscripts indicate summation. Properties of the 
coefficients Ai(ks were studied in [13-15]. 

We assume that the matrix L of the operators in relations (i) is similar [16] to some 
matrix D, i.e., a nondegenerate matrix T exists such that 

L T  = TD.  (2) 

Since L' = L and we assume that D' = D, then from Eq. (2) we obtain 

T ' L  = D T '  (3) 

Novosibirsk. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 5, pp. 
112-122, September-October, 1993. Original article submitted October 16, 1992. 
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(D, T are matrices of operators with constant coefficients; primes denote transposition). 

If u = Tv (v~ are new functions), where Dv = 0, then, taking Eq. (2) into account, we 
see that Eq. (i) Is satisfied: 

But if v = T'u, where Lu = 0, 
following equation is satisfied: 

Thus, in accordance with the formulas 

Lu = LTu = TDv = O. 

then, taking Eq. (3) into account, we see that the 

(4) 

D v  = DT'~t  = T ' L ~  = O. (5) 

u = ~ ,  v=r'~,  (6) 

solutions of Eqs. 
are equivalent [16]. 

We rewrite relation (2): 

~ = ~D~,. 

Since L' = L, we can then assume that D is a diagonal matrix. 

o r  

(L~ - D~) ~ = o, 

(4) and (5) pass over from one into the other and the systems (4) and (5) 

(7) 

Relation (7) then yields 

(8) 

= D I, ..., and vectors i.e., we have obtained a problem for the characteristic operators D11 

tjl ..... for the matrix of operators Lij. A problem of this kind for operators of the 

theory of elasticity (i) was first posed in [9]. By virtue of symmetry of Lij , we can assume 

that the characteristic vectors tjl , tj2 , tjs are orthogonal. 

If the tjp are numbers, the formulas (6) then correspond to an orthogonal transforma- 

tion of coordinates and system (i) becomes a diagonal system for a special orthotropic 

material when A2211 = -A1221 , A3all = --A1ssl, As322 = -A=s32. This case was presented in 
[15]. 

Of more interest is the version in which tjp are operators. We consider first an leo- 
tropic material for which 

~ = (X + ~) ~ + (~a~ - p0.) ~ (9 )  

(I, p are Lame coefficients). It was shown in [9] that 

DI= (k + 2~)~k--pa.,  D 2 = D 3 = ~ - - p ~  (10)  

are characteristic operators for the matrix (9), and the characteristic vectors, to within 
arbitrary multipliers, are [9," 12] 

~ = ~ '  ~ = ~ J ~ '  ~ = q ~ - ~ ' ~ '  (11)  
where the ejp s are Levi-Civita symbols; cj is an arbitrary nonzero numerical vector or an 

operator vector with constant coefficients. The vectors (Ii) are orthogonal: 

~ = % % ~  + (qqr - c ~ r  ~ , ~  + ~ , , & ~ , ,  ( i 2 )  
where ITI = tjstjs = (tiltil)(tj=tj2) = 8ii(cjcjakk - CmCnamn ) and 

[iJ)n = ~ + s162 + (CiOkk -- Cm@~) ( ~  -- ~On]). ( 13 ) 

Taking relations (4)-(6), (9)-(11) into account, we obtain, for an isotropic material, 
a solution of the Lame equations (i), (9) in the following form: 

ui = ~o, + e~0~2 + (GOkk--C.0~) ~; (14) 
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[ ( i  + 2 . )  O,~ - po_] v, = 0, 

(rto~, - 00.3 o2 = O, ( , o ~  - oo..) v~ = O; 

[(x + , )  o o + Oto,~ - po.3 ~,11 ~ = O. 

( 1 5 )  

( 1 6 )  

(17) 

The Lame system (i), (9), or (17) is equivalent [16] to the three independent equations (16), 
i.e., if vj satisfies Eqs. (16), then the displacements u i in Eq. (14) are a solution 
of the Lame ~quations (i), (9) or (17), and, conversely, if ul is a solution of system (17), 
then the functions vj in Eqs. (15) constitute a solution of t~e wave equations (16). In 
statics, obviously, the functions vj are harmonic. 

In the case of plane deformation u 3 = 0, 3a = 0 and, for c I = 0, c 2 = 0, c 3 = i, we 
obtain from relations (14), (15) 

uL = O~v~-  ~v2,  u2 = 02v~+ O~v2; ( 1 8 )  

We write formulas (18), (19) in the form of the complex combinations 

(19) 

u, + lu, = (01 + iO2) (v, + i, v2) - 2 ~  (vl + iv2); ( 2 o )  

Here i = VzC~; z = x I + ix 2. In statics vl, v 2 are harmonic functions and we can take them 
in the form of the real part of analytic functions: v I = Re ~1(z), v2 = Re T2(z). From 
relations (20) we then have 

ui + iu2 = ~ i  (z) + i ~ (z), ul - iu2 = T~ (z)  - IT~ (z) ,  ( 2 1 )  

where the prime indicates differentiation with respect to z. The displacement representation 
(21) is a particular case of the Kolosov-Muskhelishvili formula [5]. 

We turn now to the general case of Eqs. (i). If relations (2) and (3) are satisfied 
and Lu = 0, then u = TT'u is also a solution: 

Lu = LTT'u = TDT'u = TT'L~ = 0. 

If Dv = 0, then v = T'Tv is also a solution: 

Do=DT'7~= T ' L ~ =  T[TD~= O. 

The relation u = TT'u is a formula for producing solutions, since for an arbitrary given 
solution u we obtain a new solution u. This formula can be applied repeatedly. For an 
isotropic material the matrices T'T and TT' have the form (12), (13). 

If Lu = 0 and LQ - QL = RL (Q is a symmetry operator [17]), then u = Qu is also a solu- 

tion: Lu = LQu = (Q + R)Lu = 0. It is evident from this that Q = TT' is a symmetry operator 

on the group analysis sense, where R = 0. 

The s3amnetry operator can also be taken in the form Q = s Q + R = Ms (M is an arbitrary 

matrix of operators with constant coefficients, s = g' is the matrix of algebraic complements 

of elements Lij in L). We then have LQ = Ls = ILIM, (Q + R)L = Ms = MIL l , i.e., the rela- 

tion LQ = (Q + R)L is satisfied. 

For an isotropic material one of the matrices Q is the following [12]: 

Q = 
qti 

[(O~, - 2033) q~ + V 1 03 
L[(Okk 20n)~p 11,102 

I(O,k - 24,3) ~o - V 1 ~3 
qu 

I(a** - 2o22) + ,l i ] 
qn 
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Here qiI, ~, ~ are arbitrary operators with constant coefficients. 

Equivalence of systems (4) and (5) does not mean a one-to-one correspondence between 
solutions of these systems; this would be the case when ITI = const. In the general case 
solutions of systems (4) and (5) split up into non-intersecting classes of equivalent 
solutions between which a one-to-one correspondence is already established [16]. 

We turn now to Eq. (8). Let D = aks163 - p8.., aks = as , tj = Yjsas �9 We may then write 
Eq. (8) in the form 

(A~m~ - ~ )  ~ = 0.  ( 2 2 )  

Collecting similar terms and setting the coefficients of aks s to zero, from Eq. (22) we 
obtain 

(Ai, u~j - 8ijatl) 7~ = O, (Ai(n>j - 8lien) ?j2 = 0 ,  (Aic33~ - 13ija33) "?j~ = 0 ,  ( 2 3 )  

2 (Aif23)j - ~,ja23 ) "tj2 + (Ai(22)~, - (~i/a22) 'Wj3 ---- 0 ,  

(A,(33)j -- ~3ija33) Yj2 + 2 (Ai(23)j -- ~3ila23 ) ",lj 3 = O, 

2 (A,~3~i -- 6~a~3) '11~ + (A,~,I - a~ia.) %3 = 0' 

(A~(33~ -- ;3ija33) ?jl + 2 (Ai(13)j 8qai3)  Vj3 0 ,  

2 (Ai(12). i -- t3ija12 ) ' l i l  + (Ai(i1)j -- ~qall) "~.i2 = O, 

(Ai(22)~ -- ~3,ja22) 'Yjl + 2 (Ai(12)j - ~ijal2) 'Yj2 = 0 ,  

2 [(A,c23 ~ - 8 e a n )  ~ l  + (Ai(13~ - 8qal3) ~2 + (Ai<12~ - 8qan)  ~31 = 0 .  

I f  w e  i n t r o d u c e  t h e  n o t a t i o n  

A (t) = A,(n)p A (2) = Ai(22)j, A (3) = Ai(33)p 

A (4) = V~Ai(23~ , A (s) = vnZAi(I3)i, A (6) = Vr~Ai(12)/, 
(/1 ---- a l l ,  a 2  ---- a22~ r 3 ----" a33~ a 4  : Vr~a23,  a 5  = v ~ a l 3 ,  

ao = v ~ a u ,  7~ = 7ji, 72 = 7;2, 73 = 7j3, 

system (23) may then be written in the matrix-block form (E is the unit matrix) 

(A ~l' - E a t )  71 = O, 

Vm2 ( A  (4) - -  Ea4) 
A (3) - -  Ea3 

[ v ~  (A  (s) - Eas)  

A (3) -- Ea3 

[ f f ' I  (A  (6~ - Ea6) 

A ~2) - Ea2 

(A ~2) - Ea2) 72 = O, 

~ (A c4~ - Ea4)j V 

A ( l ) - E a t  ] ?l 

r  ( .4  (~  - Ea~)j ~,~ 

V ~  [ A  (4) ~ Ea4 A (s~ - E a s  

(A ~ - Ea3) 73 = O, 

0~. 

=0,  

=0, 

il] A (6) - Ea6 ] 72 = O. 

3 

(24) 

If YI = O, Y2 

(24) are then 

vector; however, 
taneously zero. 

Assume now, 

yjxal. Since tj 

= 0, ~s = 0, i.e., if all these columns of matrix Yjs are equal to zero, Eqs. 

satisfied. Then tj = 0, i.e., the characteristic vector is the zero 

this is inappropriate for us. Therefore, not all three columns can be simul- 

for example, that two columns are equal to zero: Y2 = 0, Ya = 0; then tj = 

is determined to within a factor, the factor a I then plays another role 

and we arrive at the well-known case [15] in which the tj are constant. 
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Thus, there remains the case in which all three columns are nonzero or one column, for 
example Ys, is equal to zero. Suppose ~3 = 0; from Eqs. (24) we then have 

(ACt) - Eal)  "/t = 0, (A c2) - Ea2) 72 = 0, 0 = 0, ( 2 5 )  

V"2- (A C4) -- Ea4) ~/2 = 0, ~Vr'~ " (A <s~ - Eas) "11 = O, { (A O' - E a 3 )  Vz = 0, [(A c~) - Ea3) ?t = O ,  

{ v~  (A 16~ - Ea6) 71 + (A~I) - Eat)  ~12 = O, 

(A ~2) - Ea2) YI + ~ ( A<6~ Ea6) ?2 0, 

[(A ~4) - E a 4 )  71 + (Ar - Eas) 721 = 0. 

It is evident from relations (25) that matrices A(1), A(3), A(s) have a common characteristic 

vector YI, and that matrices A(2), A(s), A(4) have the common characteristic vector Y2, and 

that, in addition, the three last equations of (25) are satisfied. In both instances it is 

first necessary to find the characteristic numbers and vectors of the matrices A(1), A(2), 

A(a) and then to require that the remaining equations in relations (24) or (25) be satisfied, 

from which the values of a4, as, a 6 are determined, along with conditions on the elastic 

moduli so that all of the Eqs. (24) can be satisfied. 

A system of the form (23) appears in [18] in a different notation and in which some 
particular solutions are given. 

For a transversally isotropic material with matrix of elastic moduli [19] 

A21 An 
A31 A3I A33 sym 

A# = 0 0 0 A44 

0 0 0 0 An 
0 0 0 0 0 A n -  A21 

system (i) has the form 

[ ] AixOn + -~ (A11 - A21) 6322 + ~ A44033 - p0.. l (AH +A21) 012u2 + (2A44 + A3I)013/23 u ~ + ]  = 0 ,  

( 2 6 )  

[; ] (:-31) 1 1 
(A11 + A21) 021ui + (An --  A21) 011 + A116322 + ] A44Oa3 - p 0  u2 + A,a 023//3 = 0 , -  

An + A31 (O~tui + 03#1~) + A44 (0ta + Oz,) + A33d~3 ~- p0.. u3 = 0. 

By means of the transformation (6), Eqs. (26) are reduced to the equivalent diagonal system 
(5) in two cases: 

! 
A31 = - ~ A44 i (27a) 

1 AltA33 - A321 
A44 ---- All"+ A33 + 2A31 > 0. (27b) 
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For relation (27a) we then have 

T = O~ ; 

0 

1 
DF = An (01.1 .'b 022 ) + "~ A44033 -- p0.., 

1 1 
D2 = ~ (A l l  -- A20  (Ou + 022) + -~ A4403s - pO , 

1 
D3 = ~ A44 (0311 + 6]22) + A33033 - p 0  , 

( 2 8 )  

and for relation (27b) we have 

T = 02 

ctO3 

0 3 = 

Operator D 2 and vector tj2 = (-82, 

transversally isotropic materials, 
tions (27). For matrices (28) and 

1 I 
-- 632 -- O'6313 " ~ A44 + A31 A33 - ~ A~ 

0l --0-023 , 0" -- 1 1 ' ( 2 9 )  
0 011 "k" 022 An - ~ A44 ~ A~ + A31 

Dl = All (011 + 022) + A330s3 - 90. . ,  

1 1 
D2 = ~ (A~ - A21 ) (011 + 022) + ~ A44033 -- p0.., 

1 
A440,~, -- p0... 

81 , 0) are characteristic for the system (26) for all 

and not only when the coefficients are connected by condi- 
(29) we obtain, respectively, 

Oil + 022 sym 
�9 T ' T  = T T '  = 0 Ou + 022 , 

0 0 

Oll + 022 @- 0.2033 
T I T  = 0 011 + 022 

0 0 

011 + ~22 + 0"201133 
TT' = 0"201233 011 -}- ~22 + 0"202233 

eta13 [1 - (011 + 6322)] aa23 [1 - (an + 0n ) l  

IT[ = (a~ + a~) ( a .  + a2~ + c~a.~3). 

IT[ = On + 022; 

sym ] ,  

�9 (On + 022) (011 + 022 + a2033) 

sym ] 
I 

(3tl + 022) 2 + a2Os 

It is evident that for relation (27b) the matrices T and T' are not commutative. 

In the examples given the matrices Yjs (solutions of Eqs. (23)) for an isotropic 
material have the form 

i:o!l f0 ,,o,j = "= , . C3 0 1 , 

0 --C2 CI 

and for a transversally isotropic material, corresponding to relations (27a) and (27b), 

,l~ ) 1 . (2~ 0 

0 0 

~,:,- ( ~  = 1 , 7~  2 )  = 0 

0 0 

. 

0 ;  
0 
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We now find the general structure of the transforming matrix T. Let us assume that 
there are two characteristic vectors of the form 

t~, = ~ . ,  t~ = ~a, , .  ( 3 0 )  

We require them to be orthogonal: 

= -~ ( ~ [ ~ .  + %~3 a~ = o.  

From this we obtain 
! 

(aI,~1 ~, + %,,13z) = O, ( 3 1 )  

or, in subscriptless notation, a'~ + (~'~)' = 0. It follows from Eq. (31) that a'$ = c is 
an antissnnmetricimatrix (c' = -c). If l~I # 0, then $ = (a')-~c. When relations (31) are 
satisfied, vectors (30) are orthogonal. The third characteristic vector tj~ must be orthogo- 
nal to the first two and we can take it in the form tj~ = ~jmntm~tn=. But this formula speci- 

fies a vector product; vector t~ = t~ x t= by definition is orthogonal to t~ and t2, and the 

three vectors form a right-handed triple of vectors. Thus the matrix T of characteristic vec- 

T = 

ijp must 

tors has the form 

where the coefficients ajs, 
T is 

J 
satisfy Eqs. (23) and (31). The determinant of matrix 

I rl = t,g,3 = (~i+) (t,2t~2) = (~j,%a,p (~.~,oa~~ (32) 

Besides solutions of the system (23), (31) for concrete materials, i.e., for given 
Ai(ks , we can present yet another approach in which the Ai(k~)j are determined upon speci- 

fying the characteristic operators Dpq = ]~p(ks163 - p~pqS.. (p = q) and the vectors (30). 

We multiply Eq. (7) by Tjq, the algebraic complements of the elements tjq: 

Lj,.qrjq = I#,D,~T,, v ( 33 ) 

S i n c e  t s q T j q  = [ T l S s j ,  t h e n  f r o m  Eq .  ( 3 3 )  we o b t a i n  

L,~ I r l  = t,O~ri~. (34) 

For numerical matrices, when ITI # 0, from relation (34) we would have 

�9 ~ rj~ rj, 1 Lq = tlpu~ ~ ' [  where - -  = g l  = ~q. 
�9 ITI  

Since our matrices are operator matrices, we then need to extract the factor IT I on the right 
side of Eq. (34) or equate all coefficients, on both sides, of the differentiation symbols 
3k~pqrs. We write Eq. (34) in more detail: 

(A , , , , , p~ , -  O~*A.) I rt = t,~ ( 7 % , ~ 4 , -  ps~a..) hq = +a~,,~a~,h, - el T 1 8 r  

From this we obtain 

A~(~t,j[ T I 0,~ = t,e74p~,~Tj,~a~,, P = q. ( 3 5 )  

D e t e r m i n i n g  t h e  a l g e b r a i c  c o m p l e m e n t s ,  we f i n d  

Tj,, = [ti, (tJ, D, tj2 (titti,), ti.~ l 

and we substitute them into relation (35): 

A,,~,~j I T[ O~ = 124~<~tn(n (t_,2tr + 7~2{kl)J,r2t]2 (t~:t,~) + k3,~z ,~ti3ti~ ] &,, ( 3 6 )  

If Eq. (36) is satisfied, then tjl, tj2, tja will be characteristlc vectors, and 

~1(k~)13ks i ~=(k~)mSks ~3(ks163 are characteristic operators. Actually, from relation 

(36) we have 

7 0 6  



There are analogous relations for tj2, tja. We now substitute expressions (30) and (32) into 
relation (36): 

In Eq. (37) we now need to equate coefficients of 8ks with reduction of similar terms 

taken into account. If we specify the quantities ~js, fljp, ~p(ks P = q, then from Eq. (37) 

we can determine the coefficients Ai(ks , and, in terms of the latter, the elastic moduli 

Aiks [14, 15] of all anisotropic materials which admit reduction of system (i) to diagonal 

form. 

For brevity, we write Eq. (37) in the form 

where a :  + a 2 + ~a = 6 and a(ks means that all permutations of the indices in the paren- 

theses are to be carried out and summation taken over the corresponding coefficients; for 

example a(:::::2) = a:::::2 + a::::=~ + a:::=:: + a::=::: + a:2:::: + a2:~::~. Relation (37) 

is then reduced to the equations a(ks Using a lexicographic arrangement, we write out 

the possible expressions of ~a:a~=~aa for which equating of coefficients is to be made: 
Ul u 2 u 3 

d':O~d.:, 

0,r o:o~; o~; ~o~; o~,g; o~o~; &g; o~o~; o~. 

It is evident from this that Eq. (37) is equivalent to 28 independent equations of the form 

a(k~pqrs) = 0. 

We consider relation (37) when all the indices are identical, 

a ( 2 2 2 2 2 = )  = O, a ( ~ 3 ~ )  = 0:  

i . e . ,  a(::::::) = O, 

(38)  

If ~m:~ml ~ 0, ~n:~n: # 0, then from the first of Eqs. (38) we obtain 

A;<ii~] = ?~<:)>: ~ + ~2<112 ~ + -~3:m3 ~"~')a"'fi":~E~ai:~g~ (39) 

If ~m2O~n2 # 0, ~n28n= z 0, and ~m3O~n3 ~ 0, ~3n3f3n: ~ 0, then from Eqs. (38) we obtain 

A;(2~11 = ,:l<n>: ai:ap + A2(22)2 ~ + ~3(n:~ 'i'~'am2~"2~gSa[2~: ( 4 0 )  

A/(33)] = ~VSZ)t a/3~ ' + ~2(33)2 ~ + 2~(33D e;mnam3~"3gf fgC~3~'%3 
~ m 3 ~ ' m 3  - ~ n 3 ~ n 3  " " " C~m3~m3~n3[~.3 

But formulas (39) and (40) are representations of the matrices Ai(ll)j , Ai(22)j , Ai(33)j in 

terms of the characteristic numbers and vectors. Taking note of:Eq. (31), it is not hard 

to verify that ~:(:m):, ~2(11)2, X3(m:)3 are characteristic numbers and that =j:, Sj:,iSjfgaflBg I 
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are characteristic vectors of the matrix Ai(ll)j 

Ai(22)j , Ai(s3)j [see Eq. (40)]. 

Since the symmetry conditions Ai(kE)j = Ak(ij)s [14, 15] hold, they then impose addi- 

tional constraints on the quantities on the right sides of Eqs. (39) and (40): 

~ (=.'g'~__.L i ~3__-_-A ~)2 31./IHI " Ct21 -- + /~2(1t)2 + z~3(11)3 

= ~1(22)I. ~ + ~2(22)2 + ~3(22)3 ~.m2~m2 ~ r 

2 ~ ~2! (Oqt~2 ~ -- Ct21~i1)2 
~I(IIH ~3_.__~ + ~2(II)2 ~.--~-~T.l + ~(ii)3 ~mt~,.l~.l~. 1 - 

. r  - . 

"" O.m3C~m3 "" ~ " " =m 3('~.m 3[~,,3~,3 
2 ~2 (~2~u - '~22~2) 2 

'~1(22)t (x3~2 + ~2(22)2 + ~3f22)~ . . . .  

2 2 
= '~I(33)1 (~23 + s'~12(33)2 ~2____~3 (Ct33~1.__.._~33 -- (X13{]33) 2 

~,~: ,~  ~o~(~,,.~ + 13<3.,)3 ~,~3~m3~o_~.3 " 

[see Eq. (39)]. Similar statements apply for 

(41) 

If we specify matrices in accordance with formulas (39) and (40), the quantities on the right 
sides must then be subject to conditions (31) and (41). 

It is evident from Eqs. (39) and (40) that the corresponding matrices of characteristic 

vectors for Ai(ll)j, Ai(22)j, Ai(3a)j, under the direct approach, need to be written (to be 

numbered) thus: 

(42) 

in order for conditions (31) and (41) to be satisfied. Further, the matrices ~js, ~jp are 

constructed from the first two columns of matrices (42) and from them possible characteris- 

tic vectors for the operators Lij are obtained: 

~1 = %~.  ~2 =~jp~,  ~3 = ej~.~l~.  ( 4 3 )  

The characteristic operators must have the form 

DH = 3t(kOl0k/ -- pO.. = ()[l(u)10u + 31(n)~022 + ,~1o3)ia33) + 

+ 23~(2a)~023 + 23~(~3>i0u + 231(12)i0u -- pO, 

0 2 2  = 32(kl)20k/ -- pO.. = (32(11)2011 @ 32(22)2022 + 32(33)2033) "Jr" 

"4" 232(23)2023 + 2t"]203)2013 + 232(12)2012 --  pO..., 

D33 = ~3(k/)3~kl -- pO = (.,/~3(ii)3011 4" '33(22)3022 4" a3(33)3033) "{- 

+ 233c23)3023 + 2)i~z3)30z3 + 233~u)30n - p0. 

(44) 

Thus, knowing the characteristic numbers and vectors of matrices Ai(iz)j , Ai(22)j, 

Ai(3s)j, we can determine the characteristic vectors (43) of the operators Lij and the par- 

tial characteristic operators (terms in parentheses in Eqs. (44)). We obtain the remain- 
ing coefficients in Eqs. (44) from the condition that expression (43) be characteristic 
vectors, acting directly on Lij or requiring satisfaction of the remaining equations of 
system (23) or (37). 

As can be verified, expressions (39), (40) satisfy the first three of Eqs. (23). 
The fourth and fifth of Eqs. (23) will be satisfied if we take the block matrix in the form 

2Ai(23~, A/tu~I [2-~(23)1aa + ~[1(22)1<~i3] ............ [~p,, ~p], + 
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Similar solutions may be written also for the remaining Eqs. of (23). Expres- 
sions of the corresponding matrices Ai(ks , obtained from expressions (39), (40), (45) and 

analogous solutions of Eqs. (23), must coincide among themselves. Moreover, it is also 
necessary that the symmetry conditions Ai(ks = Ak(ij)s [14, 15] be satisfied. All of this 

imposes additional constraints (of the type (41)) on the quantities on the right side of Eq. 
(45). Owing to their complexity, we shall not list them here. 

Thus, the approach presented here allows us, in principle, to determine all anisotropic 
materials permitting reduction of system (i) to diagonal form. The formulation of boundary 
value problems for the functions vj is the object of special investigations. 

If under the transformations of system (i) we allow operators with variable coefficients, 
then it is necessary to use, instead of transposed matrices, conjugate matrices of operators 
[20]. For operators of the form 

A~ = a,: ( & )  + aO~ ( & )  ~ + a,i<~ ) ( & )  O~, + aq(~t,,} (&): O ~  + . , .  

the formally conjugate operator 

A~ = ai, - O~ai]~ + cl~ta,~n - O~t,,aii~,,,, ~ + ... 

Let A* = A, D* = D and AC = BD; then C*A = DB*. If u = C~, where D~ = 0, the equation Au = 

AC,~ = BD9 = 0 is then satisfied. But if T = B'u, where Au = 0 the equation DT = DB*u = 

C*A~ = 0 is then satisfied. 

If Au = 0, then u = CB*u is also a solution Au = ACB*u = BDB*u = BC*Au = O. 

For an isotropic material, in the case of statics, the operators have the form 

* 

A O. = 0 o + ~ 8 0 ~  = A~, ~q = k + ~ '  

B,j = (2~q - 1) 6 o - ~&, B~ = 2~18~ + ~&, 

g ,  = ( I  + ~q) aj~app = D $ ,  x ,  = ~, a ,  = O, 

where the relations AC = BD, C*A = DB* are satisfied. We now write the well-known Papkovich- 
Neiber solution [i] as follows: 

u i = G~o~ = (1 + 2~q) % - x~4,~ ~ - x24~2 - xa4~% - aj~o4, ( 4 6 )  

Djk~0k = (1 + [q) a..% = 0. 

E x p r e s s i o n s  o f  f u n c t i o n s  ~j  i n  t e r m s  o f  a s o l u t i o n  o f  t h e  Lam~ e q u a t i o n s  i s  a s  f o l l o w s :  

% = B;fi, = 2g~a~ + x~a,~,, fi4 = 0 ,  ( 4 7 )  

g , s  = oo~ + ~,a.~, = o~ 

Again, let us write out a formula for the production of new solutions: 

= cj ,  B ; s  = { 2 , 1 [ 0  + 2,1) ~ + ~ 7 x ,4!  - ~ }  ~ = 

= 2,~ [(1 + 2~,~) g + ~4a, -~4~1 - ( ~  + ~ + x~ + 1) ~ .  
Here  Au = 0. 

F o r m u l a s  (46)  and (47 )  s o l v e  t h e  l o n g - d i s c u s s e d  p r o b l e m  c o n c e r n i n g  c o m p l e t e n e s s  and 
g e n e r a l i t y  o f  t h e  P a p k o v i c h - N e i b e r  s o l u t i o n .  I t  f o l l o w s  f r o m  r e l a t i o n s  (47 )  t h a t  

~j = 2~1% + x,%, ] = I, 2, 3, ~4 = 0,~,,, 

o,,pj = 2~1o, g + aj,~,, + xp, v,; 

a,~o, = (2l~ + 3) ~o4 + x, a4o4, ( 4 8 )  

7 0 9  



i.e., functions ~j are interrelated through the relation (48). 

Remark. The formulas presented here do not exhaust all solutions of system (I). For 
complete generality it is necessary to consider the equations Dv = f, Tf = 0 or D~ = f, Bf = 
0. The Papkovich-Neiber solution (46) is a general solution since, as a direct verificatibn 
shows, it satisfies the condition of generality D Ker C = Ker B [20]. 
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