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GENERAL SOLUTIONS AND REDUCTION OF A SYSTEM OF
EQUATIONS OF THE LINEAR THEORY OF ELASTICITY TO DIAGONAL FORM

N. I. Ostrosablin UDC 539.3,517.958

Numerous attempts have been made [1-11] to represent stresses or displacements in terms
of arbitrary independent functions (for example, harmonic and biharmonic functions) in such
a way that the equations of elasticity theory are satisfied identically. We call such repre-
sentations general solutions. However, up to the present, there has been no single approach
to the construction of general solutions. In the present paper we present a method which
makes it possible to reduce, in certain cases, a system of differential equations (of
linear elasticity theory) with constant coefficients to a simpler system; in particular, to
a diagonal system. Moreover, the transformation inverse to the initial system is specified
by a transposed or conjugate matrix. Expressions are also obtained for the production of
new solutions (operators of symmetry in the sense of group analysis), starting from some
concrete solution. The idea of the method is presented briefly in [12]. Explicit formulas
are presented for isotropic and transversally isotropic materials, and completeness and
generality of the Papkovich—Neiber solution is shown.

The equations of elasticity theory, in the presence of arbitrary anisotropy and the
absence of volume forces, have the following form [7] in Cartesian orthogonal coordinates
X1s Xgps Xzt

Ly = 0, Ly=1L;= AignOu— Paija.., (1)

where ujy is the displacement vector; Aj(ke)j = (Aikgj + Aigkj)/z; Ajkej is a constant tensor
of elastic moduli; p is the constant density of the material; 5ij is the Kronecker symbol;
3k indicates differentiation with respect to the coordinate xi; and 8 indicates differen-

tiation with respect to the time; repeated subscripts indicate summation. Properties of the
coefficients Aj(kg)j were studied in [13-15].

We assume that the matrix L of the operators in relations (1) is similar [16] to some
matrix D, i.e., a nondegenerate matrix T exists such that ~

LT = TD. 2)
Since L' = L and we assume that D' = D, then from Eq. (2) we obtain
T'L = DT’ (3)

Novosibirsk. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 5, pp.
112-122, September-October, 1993. Original article submitted October 16, 1992.
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(D, T are matrices of operators with constant coefficients; primes denote transposition).

If u = Tv (v; are new functions), where Dv = 0, then, taking Eq. (2) into account, we
see that Eq. (1) is satisfied:
Lu=LTv =TDv = 0. (4)

But if v = T'u, where Lu = 0, then, taking Eq. (3) into account, we see that the
fellowing equation is satisfied:
Dv=DTu=TLu=0. (5)
Thus, in accordance with the formulas
u= ’Tv, U= T'ﬁy (6)

solutions of Eqs. (4) and (5) pass over from one into the other and the systems (4) and (5)
are equivalent [16].

We rewrite relation (2):
Lty = D, (7)
Since L' = L, we can then assume that D is a diagonal matrix. Relation (7) then yvields
Lty = tuDy,  Lytp = 8Dy, Lty = 83D,
or '
(Ly — D) § = 0, (8)
i.e., we have obtained a problem for the characteristic operators D;; = Dy, ..., and vectors
tjl: ..., for the matrix of operators Lij* A problem of this kind for operators of the
theory of elasticity (1) was first posed in [9]. By virtue of symmetry of Lija we can assume
that the characteristic vectors ti1s tyzs tjs areborthogonal.
If the typ are numbers, the formulas (6) then correspond to an orthogonal transforma-
tion of coordinates and system (1) becomes a diagonal system for a special orthotropic

material when Aj,11 = ~Ajj51, Aszsz11 = —A1ss1s Aszss = —As33,. This case was presented in
[15].

Of more interest is the version in which tjp are operators. We consider first an iso-
tropic material for which

L= (A + 1) 0 + (40 ~ p2) & )
(A, v are Lame coefficients). It was shown in [9] that
Dy=(h+20) 8~ p0.,, D,=D;=pdy — pd, (10)

are characteristic operators for the matrix (9), and the characteristic vectors, to within
arbitrary multipliers, are [9, 12]

tjl = aj7 th = ejpscpa.n tj3 = Cjakk - cmamj (11)
where the €jps are Levi-Civita symbols; ¢j is an arbitrary nonzero numerical vector or an

operator vector with constant coefficients. The vectors (11) are orthogonal:
totiy = 80p10g1 + (63 = CmCnOn) 0202 + Bunlialindp3dys, (12)
where |T| = tistyjs = (tiitya)(tyaty,) = 3ii1(cjcidkk — cmCndmn) and
Lol = Oy + g CpCalsr + (€0 — €} (60, ~ CsOu) {13)

Taking relations‘(ﬁ)*(é), (9)-(11) into account, we obtain, for an isotropic material,
a solution of the Lame equations (1), (9) in the following form:

U = Opy + €uC0U; + (Cic — CmOpi) U3, (14)
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Yy = aju;" v = s‘jpscpasuj’ Uy = (Cjakk - cmamj) uj; (15)

[(A +21) 8 — p0. 1oy =0, (16)
(M — PO, =0, (W0 —pd)v3=0;
[» + u) 3; + (10 — pa.) 9] = 0. (17)

The Lamé system (1), (9), or (17) is equivalent [16] to the three independent equations (16),
i.e., if vj satisfies Egqs. (16), then the displacements uj in Eq. (14) are a solution
of the Laméféquations (1), (9) or (17), and, conversely, if u; is a solution of system (17),
then the functions vi in Egs. (15) constitute a solution of the wave equations (16). In
statics, obviously, the functions vj are harmonic.

In the case of plane deformation ug =0, 3; =0 and, for ¢; =0, ¢, =0, ¢c5 = 1, we
obtain from relations (14), (15)

ug =0, — 8wy, up =y + Oy (18)

v = il + iy, Uy = —yily + Ay (19)
We write formulas (18}, (19) in the form of the complex combinations

w, + iu, = (61 + iaz) (Ul + l‘,UZ) = 2&5 (Ul + iUz); (20)
vy + i02 = (al - 162) (Fll + ll}z) = 2()2 (ﬂl + l‘az)
Here i = v~1; z = x; + ix,. In statics v;, v, are harmonic functions and we can take them

in the form of the real part of analytic functions: v; = Re ¢;(z), v, = Re ¢,(2z). From
relations (20) we then have

231 + iuZ ’z (Pi (Z) + l‘Pé (Z)a u - iuZ = ‘Pi (Z) - l‘Pé (Z)’ (21)
where the prime indicates differentiation with respect to z. The displacement representation
(21) is a particular case of the Kolosov-Muskhelishvili formula [5].

We turn now to the general case of Egs. (1). If relations (2) and (3) are satisfied
and L4 = 0, then u = TT'u is also a solution:

Lu=LTT'a = TDT'i = TT'Lit = 0.
If Dv = 0, then v = T'Tv is also a solution:
Dv = DT'TS = T'LT6 = T'TDV = 0.
The relation u = TT'a is a formula for producing solutions, since for an arbitrary given

solution U we obtain a new solution u. This formula can be applied repeatedly. For an
isotropic material the matrices T'T and TT' have the form (12), (13).

If i = 0 and LQ — QL = RL (Q is a symmetry operator [17]), then u = Qu is also a solu-
tion: Lu =10t = (Q + R)La = 0. It is evident from this that Q = TT' is a symmetry operator
on the group analysis sense, where R = 0.

The symmetry operator can also be taken in the form Q = &M, Q + R = ML (M is an arbitrary
matrix of operators with constant ccefficients, & = &' is the matrix of algebraic complements
of elements Ljj in L). We then have LQ = LM = [L|M, (Q + R)L = MaL = M[L|, i.e., the rela-
tion LQ = (Q + R)L is satisfied.

For an isotropic material one of the matrices Q is the following [12]:

| au (@ — 20) 9 — 913, [ — 20) @ + 9125
Q= (0 - )9+ $1d - i [(B — 20 ¢ — Y1841,

[(Ou — 202) ¢ — Y10, [(akg - 20n) ¢ + 10, i1
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Here g;1, ¢, ¥ are arbitrary operators with constant coefficients.

Equivalence of systems (4) and (5) does not mean a one-to-one correspondence between
solutions of these systems; this would be the case when |T| = const. In the general case
solutions of systems (4) and (5) split up into non-intersecting classes of equivalent
solutions between which a one-to-one correspondence is already established [16].

We turn now to Eq. (8). Let D = aggdky — p3~, agy = agk, tj = Yjsds. We may then write
Eq. (8) in the form

(Ai(kl)j - E5’:'J'ak/) YiOus = 0.

(22)
Collecting similar terms and setting the coefficients of 3y to zero, from Eq. (22) we
obtain )
(Aquy = 05a) Yy = 0, (A — 85an) ¥2 = 0,  (Aissy — Oyan) ¥ = 0, (23)
2 (Ai(Zj)j - 51,023) Vi + (Aiay — 6«‘1‘022) Y3 = 0,
(Asay — Oyazs) Vo + 2 (Aiasy — dyas) ¥ = 0,
2 (Aiusy = dyai3) i + (Aiury = S4an) v = 0,
(Awzzy — da) Vi + 2 (Aiasy — dyais) ¥ = 0,
2 (Ayzy — O5an) T + (Aqay — dyan) v = 0,
(Aigzy — d5an) Vi + 2 (Azy — da1) ¥ = 0,
2 [(Auasy — O4ax) v + (Aigay — dzaws) o + (Aiqray — 5:7412) ‘\’131 =0,
If we introduce the notation
AV = Aqy, AP = Agy, A9 = Aigy,
AD = VI Ay A9 = VI Airys A©® = V2 Az
ay = day, @ =4y, 3= 4y, A= viay, as=Vlap,
a=vVZay, V=Y V=Y V=Y
system (23) may then be written in the matrix-block form (E is the unit matrix)
(AY = Ea) v =0, (A% - Ea)y,=0, (4° - Ea3)y; =0, (24)
VI(AY - Ea) A?-Ea |[yv)] _ 0
A(s) - Ea;, \/-2- (A“) - Ea4) Y3 o
(VI (A® - Eay) AY — Ea; ] [y)] -0
AV —Eay  VI(A® - Eay| |vs|
VI (4® - Ea)) A% -Ea, | [v] _ o
A? —Eay  VI(AY-Ea)| 0|
Y1
V2 [A® = Eay, AP — Eas A® — Eagl |v2{ = 0.
Y3

If y; =0, Yy =0, vy =0, i.e., if all these columns of matrix Yjs are equal to zero, Egs.
(24) are then satisfied. Then tj = 0, i.e., the characteristic vector is the zero

vector; however, this is inappropriate for us. Therefore, not all three columns can be simul-
taneously zero.

Assume now, for example, that two columns are equal to zero: y, = O, Y3 = 0; then ty =
leal. Since t5 is determined to within a factor, the factor 3, then plays another role

and we arrive at the well-known case [15] in which the tj are constant.
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Thus, there remains the case in which all three columns are nonzero or one column, for
example y;, is equal to zero. Suppose Y3 = 0; from Eqs. (24) we then have

(AY — Eaq)y, =0, (AP - Eaz)y,=0, 0=0, (25)

VI (AY - Ea) v, =0, [VIZ(4® -~ Ea)v =0,
(A(a) — Ea3) v, =0, (A(a') — Ea3)y, = 0,

V2 (A ~ Eag) v, + (A" — Eay) v, = 0,
(A® = Ea)) vy, + V2 (4‘6’ - Eag) v, = 0,

VI [(AY ~ Eay) v, + (4° — Eas) v,1 = 0.

It is evident from relations (25) that matrices A(1), A(3®), A(®) have a common characteristic
vector y;, and that matrices A(2), A(3), A(*) have the common characteristic vector Yo, and
that, in addition, the three last equations of (25) are satisfied. In both instances it is
first necessary to find the characteristic numbers and vectors of the matrices A(1), A(2),
A(3) and then to require that the remaining equations in relations (24) or (25) be satisfied,
from which the values of a,, as, ag are determined, along with conditions on the elastic
moduli so that all of the Egqs. (24) can be satisfied.

A system of the form (23) appears in [18] in a different notation and in which some
~ particular solutions are given.

For a transversally isotropic material with matrix of elastic moduli [19]

Ay

Ay Ay .

Ay Ay As - Sym
o 0 0 0 A,

0 0 0 0 A,

9 0 0 0 0 A,-A4A,

system (1) has the form

(26)
1 1. i : 1
[Auau + 3 (Ay — 4y) o + 3 Ayuls3 — Pa..] u + 2 (A + Az) Opuy + (5 Ay + A31) dsu; = 0,

i 1 : 1 1

'2‘ (Au + An) 621141 + [‘2‘ (Au - An) au + Auazz + E A44633 “Pa_.} 7] + (E A“ + An) 623ll3 = 0, .
1 1 .
(5 Ay + ASI) (Onuy + Bnuy) + [5 Ay (O + 0p) + A3y — Pa.] u = 0.

By means of the transformation (6), Eqs. (26) are reduced to the equivalent diagonal system
(5) in two cases:

1
Ay = —~ 2 A«;_ ’ (2‘73)
2
1 _ _AnAs - Ay
E Au = Ay '+ Az + 243 >0. : (27b)
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For relation (27a) we then have

& -8, 0 A
T=1(0, & 0; (48)
0 0 1

1
D, = Ay (al_l .+ 622) + 2 Aydss — Pa ’
1 1
Dy =5 (Au = An) (Ou + 0n) + 5 Auby — 3.,

1
Dy = 2 As (011 + 0) + A0y — p0_,

and for relation (27b) we have

. 1 H
0, —0 -—ody FAut A Ap =5 Au

T=10 0 =—aip|, a=—7T"—"=7 -5 (29)
0.03 0 611 + 622 Ap - EAM EAM + Az

Dy = Ay (01 + 0p) + Apdy; — pd.,
i 1

D, = 3 (A — Ay) (O + dn) + 3 As033 - ed.,
1

Dy = 3 ABu — pa. .

Operator D, and vector tj, = (~3,, 8;, 0) are characteristic for the system (26) for all

transversally isotropic materials, and not only when the coefficients are connected by condi-
tions (27). For matrices (28) and (29) we obtain, respectively,

dn + 0n sym
T'T=TT = 0 Oy + 0n ) [T| =8y + 0a;
0 0 1]

3y + Oy + &0y sym
T'T = 0 au + 022 7 ’
0 0 (3u+ 8y) (Ou + 0 + ')

O + 0y + aldyy sym —g ]
T = o’dy B + By + POy . i
adyy [1 = (On + 8u)] s 11 = (Bu + 00)1 (3 + 0)° + 0’y

L]

[T| = (8u + 0) (Qu + 0 + o033).

It is evident that for relation (27b) the matrices T and T' are not commutative.

In the examples given the matrices Yis (solutions of Egs. (23)) for an isotropic
material have the form

1 0 0 0 —~C3
.Ylg'“ = 0 I 0 ) YJ(SZ) =10 O =i,
0 0 1 » il & NN ] 0

and for a transversally isotropic material, corresponding to relations (27a) and (27b),

1 0 0] 0 ~1 0]
*{L”: 6 1 0f, y}(f)z I 0 0f;
000 6 0.0
1 0 0] 0 -1 0]
y'=10 1 0}, 4@=1{1 0 0.
0 0 « 0 0 0
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We now find the general structure of the transforming matrix T. Let us assume that
there are two characteristic vectors of the form

= 00, = Bis0p- (30)
We require them to be orthogonal:

1
tty = a0, = 3 (o + aBy) 8, = 0
From this we obtain

(ajsﬁjp Jl’ﬁﬂ) = (31)

or, in subscriptless notation, a'f + (a'B)' = 0. It follows from Eq. (31) that a'B = c is

an antisymmetric|matrix (c' = —c). If |a| # 0, then B = (a') !c. When relations (31) are
satisfied, vectors (30) are orthogonal. The third characteristic vector ti, must be orthogo-
nal to the first two and we can take it in the form tj; = €jpntpitpe. But this formula speci-

fies a vector product; vector t; = t; x t, by definition is orthogonal to t; and t,, and the

three vectors form a right-handed triple of wvectors. Thus the matrix T of characteristic vec-
tors has the form

a0, ﬁlﬁaP (akﬁk - alfﬁzl’) @,,,
T= O'Q.ra: ?’Zpdp (le‘Blp - abﬁlp) ()Jp )
0*3505 [53p()p (0*15(32;) - O’Zvﬁlp) a‘!p

where the coefficients ajg, Bjp must satisfy Egs. (23) and (31). The determinant of matrix
T is

¢ —

IT‘ = Lty = (Gul) (o) = (0400, )(Bkm{ikn Qo) (32)

Besides solutions of the system (23), (31) for concrete materials, i.e., for given
Aj(kg)j» We can present yet another approach in which the Aj(gg)j; are determined upon speci-

fying the characteristic operators Dpq = Ep(kg)qakg = p8pgd- (p = q) and the vectors (30).
We multiply Eq. (7) by Tjq» the algebraic complements of the elements tjg:

LL,IWT =1 DMTM (33)
Since tgqTjq = |T|8gj, then from Eq. (33) we obtain
f-]' ‘Ti = I‘PDP‘!TW' (34)
For numerical matrices, when |T| # 0, from relation (34) we would have

Ty _
L r'P DP‘? ! T| where l ';‘! I’D r!‘r‘
Since our matrices are operator matrices, we then need to extract the factor [T| on the right
side of Eq. (34) or equate all coefficients, on both sides, of the differentiation symbols
We write Eq. (34) in more detail:

(A0 = p850.) | T1 = by (RuungOu — 0500 Tig = lpApiaag@uT o — pIT(d0. .

akqurs'

From this we obtain
Ay T10k = 1Ay Tl P = Q- (35)
Determining the algebraic complements, we find
Ty = Iy (o) G2 (aln)s 53]

and we substitute them into relation (35):

Ay | T 0 = [Aigantaty (o) + Aol (fata) + Asuapstalis | O (36)

If BEq. (36) is satisfied, then tjl, jz, tj3 will be characteristic vectors, and

Ki(k0)19%9s A2(k2)29ke> Bs(ke)sdky are characteristic operators. Actually, from relation

(36) we have '
Ajayb } wa«: = mukml}l (f;‘!’il) {faf) + Rzékﬁzféz (7;'211’!) (T} + A&ekm&s ({;‘31;'1) 10u= A“‘"“‘fﬂlﬂa""
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There are analogous relations for tj,, tjs. We now substitute expressions (30) and (32) into
relation (36):

Aifkl)jampamqﬁﬂrﬁmaklpqrs = Mlmna.'pa;qﬁmﬁm + AZ(kl)zampamqﬁirB)x + A3¢ms€;mnejfgampafqﬁmﬁgs } G-

In Eq. (37) we now need to equate coefficients of dkgpqrs With reduction of similar terms
taken into account. If we specify the quantities ajss Bip» Kp(kg)q, p = q, then from Eq. (37)
we can determine the coefficients Aj(kg)j» and, in terms of the latter, the elastic moduli
Ajkey [14, 15] of all anisotropic materials which admit reduction of system (1) to diagonal
form.

For brevity, we write Eq. {37) in the form

QipgrsOetpgrs = Auiapgsi Ot 103°05° = 0,

where oy + o, + a3 = 6 and a(kipqrs) Mmeans that all permutations of the indices in the paren-
theses are to be carried out and summation taken over the corresponding coefficients; for
example a(i113112) = 8111112 * 8111121 * @111221 F 8112121 F 8121121 F 2211111 Relation (37)
is then reduced to the equations a(kepgrs)- Using a lexicographic arrangement, we write out

the possible expressions of 3$¢'0%?0%® for which equating of coefficients is to be made:

& 00,, 305 9193, 919,04, 9103 303,
01050y, 010,33, A10%; 3103, 3130, 310507,
310,03, 0103 0,83, 0,30,, 0,005, 3,055,

010,03, 0,03 &3 030y; 8303, oY A%; 3,05 O

It is evident from this that Eq. (37) is equivalent to 28 independent equations of the form
a(kepqrs) = O-
We consider relation (37) when all the indices are identical, i.e., a(111211) = 0,

8(222222) = 0, a(s33333) = O:

A1y G BaiBar = Aiananey B + (38)
+ AZ(II)Zc{mIamI{iil( it AS(H)3Eimnej[gamlaf1§3nlﬁgb

Ai22% % maBnaBre = Ao BeaBag +
+ A2y mrmaBiafin + A28 imn€ g BmaOaBalezs

Ai135%m3%m3Baibas = AuaznenepBala +
+ Ap3320mi%mPBisBis + AsaniCimnirg CmattysBaafes.

If apiogy # O, BpiBni # 0, then from the first of Egs. (38) we obtain

EiemnCm B 185&{1{13’*31 19
amlamlﬁnianl . ( }

By
Ay = fhium ”—L“ + Axiig 2, 55 -+ A

If opaons # 0, BnzBnz # 0, and aggops # 0, BpaBnps # 0, then from Eqs. (38) we obtain

N
2042 Buabna EimnOmaBn 280 ale 2 (40)
Aoy = Ao —=2 + A LV | mnCmdPn27fg F2082
a2y G o 0, 228 8, e N 1Y
o, Bz L3380 3Be3
Ay = Aot il 4 Apaya gops + Aggpsyy “omndlig s
{33y HM“ m3i%m3 23312 ﬁ B 3333 am30~m3§nlﬁn3

But formulas (39) and (40) are representations of the matrices Ai(11)3s Ai(22)§» Ai(ss)j in

terms of the characteristic numbers and vectors. Taking_note of Eq. (31), it is not hard
to verify that Ai(11)1, K2(11)25 K3(11)s are characteristic numbers and that aj1s le’lsjfg“flﬁg'l
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are characteristic vectors of the matrix Ai(ll)j [see Eq. (39)]. Similar statements apply for

Aj(22)3> Ai(ss)j [see Eq. (40)1.
Since the symmetry conditions Aj(kg)j = Ak(ij)g [14, 15] hold, they then impose addi-
tional constraints on the quantities on the right sides of Eqs. (39) and (40):

o 2
(3181 ~ 2
A o ‘U -t Asany 565 + Ay ;lmi;mlgnilﬁnsll = (41)

5 2

_ A + 3 Y (22232 — a3fa)

= Ajant “‘_‘a o anmy B D e
2 2 :

a LTI B, 4 (enba - aaBu)” _

A goa T A g g 5, 2 G @B

(@2fss — auf)’

B
+ sz)z ﬂ B + RB(”” U‘mS“mSﬁnSﬁn}

= Amm

<13‘:‘.’»

(@ — anf)’ _

2
+ A + A =
2 2222 ﬁ 6 and amlamzﬂnlsnl

20

Al(ll)l

(033 ~ ayaPa)’

2
B
= Ao G+ Ao+ A o

If we specify matrices in accordance with formulas (39) and (40), the quantities on the right
sides must then be subject to conditioms (31) and (41).

It is evident from Egqs. (39) and (40) that the corresponding matrices of characteristic
vectors for Ai(ll)j’ Ai(zz)j: Ai(ss)j’ under the direct approach, need to be written {(to be

numbered) thus:
o Bits EretniBerdl, (s Bios eepafp s lotan Biss ertsaBeshs (42)

in order for conditions (31) and (41) to be satisfied. Further, the matrices ajgs Bjp are
constructed from the first two columns of matrices (42) and from them possible characteris-

tic vectors for the operators Ljj are obtained:
{jl = ajsasa ij =,§jpapv th = ejmntmltnl' (43)
The characteristic operators must have the form

Dy = Ajun0u — 0. = (Aiandn + A0 + Aands) + (44)

+ 22,3510 + 2A53,1013 + 24,0201 — 0.,

Dy = Ayunadu ~ 0. = (Ayundu + Axann + AxssnOs) +
+ 232(23)2523 + 2203201 + 22302001 ~ PO,

Dsz = Azl — = (Asan0u + Azl + 33(33)3333) +
+ 233(23)3523 + 24313301 + 245023012 —

Thus, knowing the characteristic numbers and vectors of matrices Ai(n)js Ai(gz)j,
Aj(33s)j» we can determine the characteristic vectors (43) of the operators Li;j and the par-

tial characteristic operators (terms in parentheses in Egs. (44)). We obtain the remain-
ing coefficients in Eqs. (44) from the condition that expression (43) be characteristic
vectors, acting directly on Ll_] or requiring satisfaction of the remaining equations of

system (23) or (37).

As can be verified, expressions (39), (40) satisfy the first three of Eqs. (23).
The fourth and fifth of Egs. (23) will be satisfied if we take the block matrix in the form

(45)

2A05  Avazy - 2A1031%2 + Ajeds faj. o] "
Ay Ay Ao + 2A)0m100 | %ot + %%
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+ 2430382 + AxanaBis B Bl + 223033 ime%ontPr2 + A32238imn@m3Bn3 | [EimnCmBr2s GmnOmaPail
Ay + 2A50Bi | Beobra + Besbrs Asan)3imnComaPrz + 233(23,32,:,",,0&,,,36,,3 2oy + ap0aByfs

Similar solutions may be written also for the remaining Egs. of (23). Expres-
sions of the corresponding matrices Ai(kg)j, obtained from expressions (39), (40), (45) and

analogous solutions of Egs. (23), must coincide among themselves. Moreover, it is also
necessary that the symmetry conditions Aj(kg)j = Ak(ij)e [14, 15] be satisfied. All of this

imposes additional constraints (of the type (41)) on the quantities on the right side of Eg.
(45). Owing to their complexity, we shall not list them here.

Thus, the approach presented here allows us, in principle, to determine all anisotropic
materials permitting reduction of system (1) to diagonal form. The formulation of boundary
value problems for the functions vy is the object of special investigations.

If under the transformations of system (1) we allow operators with variable coefficients,
then it is necessary to use, instead of transposed matrices, conjugate matrices of operators
[20]. TFor operators of the form

Ay = ag (%) + ap (%) % + Qyuy (%) O + dygam (%) Oum + -
the formally conjugate operator

£
Ap = a5 ~ akaijk + akia}j(kl) - aklmafj(kl’m) + ...

2,

Let A* = A, D* =D and AC = BD; then C*A = DB*. If u = Gy, where Dy = 0, the equation Au =
ACp = BD¢ = 0 is then satisfied. But if ¢ = B*u, where Au = 0 the equation Dy = DB*G =
C*Au = 0 is then satisfied.

If Au = 0, then u = CB*u is also a solution Au = ACB*U = BDB*G = BC*Ad = 0.

For an isotropic material, in the case of statics, the operators have the form

A= 8 + udd, = A;, = T i o
Co=(1+20) 8 — xd,  Ciy=2(1+ ) 8 + 53,
B,=(2u, — 1)d — x8, B =2ud; + xd,
Di=(+m)dd,=D; xs=1, 8=0,

Tk

[

where the relations AC = BD, C*A
Neiber solution {1] as follows:

DB* are satisfied. We now write the well-known Papkovich—

= Cupe = (1 + 201) ¢, — %1071 = X092 — X303 — Jips, . {46)
Dupi = (1 + ) 3,9, = 0.

Expressions of functions 95 in terms of a solution of the Lamé equations is as follows:
P = B;&, = Zulﬁj + x,@,-ﬁ;, &4 = O, ([47)
A‘JEJ = ailﬂ,- -+ ula,:ﬂ,» = 0‘.
Again, let us write out a formula for the production of new solutions:
u; = CpBrat, = {200 (1 + 2p,) & + x0, = %8 ] = xexd) i =
= 2u [(1 + 2u) & + X0t — x0i1 — (o6 + 4 + x5 + 1) Qyid.
Here Au = 0.

Formulas (46) and (47) solve the long-discussed problem concerning completeness and
generality of the Papkovich—Neiber solution. It follows from relations (47) that

@O =2+ xps,  J=1,2,3, @=L,
dup; = 2“16117} + 6,‘.“?4 + X,0:4;

4
o = (2u + 3) ©4 + X,0:p4, ( 8)
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i.e., functions ¢j are interrelated through the relation (48).

Remark. The formulas presented here do not exhaust all solutions of system (1). For
complete generality it is necessary to consider the equations Dv = £, Tf = 0 or D¢ = f, Bf =
0. The Papkovich—Neiber solution (46) is a general solution since, as a direct verification
shows, it satisfies the condition of generality D Ker C = Ker B [20].

LITERATURE CITED

. P. F. Papkovich, Theory of Elasticity [in Russian], Oborongiz, Leningrad—Moscow (1939).

B. G. Galerkin, Collected Works [in Russian], Vol. 1, Akad. Nauk SSSR, Moscow (1952).

G. Neiber, Stress Concentration [in Russian], 0GIZ, Gostekhizdat, Moscow—Leningrad (1947).

Yu. A. Krutkov, Stress Function Tensor and General Solutions in Statics in Elasticity

Theory [in Russian], Akad. Nauk SSSR, Moscow-Leningrad (1949).

5. N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity,
Noordhoff, Groningen (1953).

6. E. N. Baida, General Solutions of the Theory of Elasticity and Problems Concerning a
Parallelepiped and a Cylinder [in Russian], Gosstroiizdat, Leningrad (1961).

7. S. G. Lekhnitskii, Theory of Elasticity of anAnisotropic Elastic Body, Holden-Day, San
Francisco (1963).

8. N. I. Ostrosablin, "General representation of a solution of the equations of linear
elastic theory for an isotropic body," in: Dynamics of a Continuous Medium: Compendium
of Scientific Papers, No. 61, Inst. of Hydrodynamics, Siberian Branch [in Russian],
Acad. of Sciences of the USSR (1983).

9. N. I. Ostrosablin, "On a general solution of the equations of the linear theory of
elasticity,”" in: Dynamics of a Continuous Medium: Compendium of Scientific Papers, No.
92, Inst. of Hydrodynamics, Siberian Branch [in Russian], Acad. of Sciences of the USSR
(1991).

10. K. Marguerre, "Ansatze zur Losung der Grundgleichungen der Elastizititstheorie," ZAMM,
35, No. 6/7 (1955).

11. C. Truesdell, "Invariant and complete stress functions for general continua,' Arch. Rat.
Mech. Anal., 4, No. 1 (1959).

12, N. I. Ostrosablin and S. I. Senashov, "General solutions and symmetries of equations of
the linear theory of elasticity," Dokl. Akad. Nauk SSSR, 322, No. 3 (1992).

13. A. N. Norris, "On the acoustic determination of the elastic moduli of anisotropic solids
and acoustic conditions for the existence of symmetry planes," Quart. J. Mech. Appl.
Math., 42, No. 3 (1989).

14. N. I. Ostrosablin, "On the matrix of coefficients in the equations of the linear theory
of elasticity," Dokl. Akad. Nauk SSSR, 321, No. 1 (1991).

15. N. I. Ostrosablin, "On the equations of the linear theory of elasticity," Prikl. Mekh.
Tekh. Fiz., No. 3, May-June (1992).

16. V. M. Borok, "On systems of linear partial differential equations with constant coeffi-
cients," Izv. Vyssh. Uchebn. Zaved., Mat. No. 1 (1957).

17. L. V. Ovsyannikov, Group Analysis of Differential Equations [in Russian], Nauka, Moscow
(1978).

18. J. J. Marciniak, "The generalized scalar wave equation and linear differential in-
variants in linear elasticity," Intern. J. Engng. Sci., 27, No. 6 (1989).

19, N. I. Ostrosablin, "Characteristic moduli of elasticity and states for materials of
crystallographic syngony," in: Dynamics of a Continuous Medium: Compendium of Scien-
tific Papers, No. 75, Inst. of Hydrodynamics, Siberian Branch [in Russian], Academy of
Sciences of the USSR (1986).

20. Zhang Hong-qing and Yang Guang, "Constructions of the general solution for a system of

partial differential equations with variable coefficients,'" Appl. Math. and Mech.

(Engl. Ed.), 12, No. 2 (1991).

.

BN

710



